Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 169-177, 2017.
Article in English | WPRIM | ID: wpr-728582

ABSTRACT

Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)₃ receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC₅₀ value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT₃-mediated currents evoked by 1 mM dopamine, a partial 5-HT₃ receptor agonist, were inhibited by lamotrigine co-application. The EC₅₀ of 5-HT for 5-HT₃ receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT₃ receptor desensitization, inhibited 5-HT₃ receptor currents in a concentration-dependent manner. The deactivation of 5-HT₃ receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT₃ receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT₃-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.


Subject(s)
Dopamine , Epilepsy , Neuroblastoma , Receptors, Serotonin, 5-HT3 , Serotonin
2.
The Korean Journal of Physiology and Pharmacology ; : 209-214, 2009.
Article in English | WPRIM | ID: wpr-728733

ABSTRACT

The striatum receives glutamatergic afferents from the cortex and thalamus, and these synaptic transmissions are mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. The purpose of this study was to characterize glutamate receptors by analyzing NMDA/AMPA ratio and rectification of AMPA and NMDA excitatory postsynaptic currents (EPSCs) using a whole-cell voltage-clamp method in the dorsal striatum. Receptor antagonists were used to isolate receptor or subunit specific EPSC, such as (DL)-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, ifenprodil, an NR2B antagonist, CNQX, an AMPA receptor antagonist and IEM-1460, a GluR2-lacking AMPA receptor blocker. AMPA and NMDA EPSCs were recorded at -70 and +40 mV, respectively. Rectification index was calculated by current ratio of EPSCs between +50 and -50 mV. NMDA/AMPA ratio was 0.20+/-0.05, AMPA receptor ratio of GluR2-lacking/GluR2-containing subunit was 0.26+/-0.05 and NMDA receptor ratio of NR2B/NR2A subunit was 0.32+/-0.03. The rectification index (control 2.39+/-0.27) was decreased in the presence of both APV and combination of APV and IEM-1460 (1.02+/-0.11 and 0.93+/-0.09, respectively). These results suggest that the major components of the striatal glutamate receptors are GluR2-containing AMPA receptors and NR2A-containing NMDA receptors. Our results may provide useful information for corticostriatal synaptic transmission and plasticity studies.


Subject(s)
Animals , Rats , 6-Cyano-7-nitroquinoxaline-2,3-dione , Adamantane , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Excitatory Postsynaptic Potentials , N-Methylaspartate , Piperidines , Plastics , Receptors, AMPA , Receptors, Glutamate , Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Thalamus
3.
The Korean Journal of Physiology and Pharmacology ; : 293-297, 2008.
Article in English | WPRIM | ID: wpr-728373

ABSTRACT

The effect of forskolin on corticostriatal synaptic transmission was examined by recording excitatory postsynaptic currents (EPSCs) in rat brain slices using the whole-cell voltage-clamp technique. Forskolin produced a dose-dependent increase of corticostriatal EPSCs (1, 3, 10, and 30micrometer) immediately after its treatment, and the increase at 10 and 30micrometer was maintained even after its washout. When the brain slices were pre-treated with (DL)-2-amino-5-phosphonovaleric acid (AP-V, 100micrometer), an NMDA receptor antagonist, the acute effect of forskolin (10micrometer) was blocked. However, after washout of forskolin, an increase of corticostriatal EPSCs was still observed even in the presence of AP-V. When KT 5720 (5micrometer), a protein kinase A (PKA) inhibitor, was applied through the patch pipette, forskolin (10micrometer) increased corticostriatal EPSCs, but this increase was not maintained. When forskolin was applied together with AP-V and KT 5720, both the increase and maintenance of the corticostriatal EPSCs were blocked. These results suggest that forskolin activates both NMDA receptors and PKA, however, in a different manner.


Subject(s)
Animals , Rats , Brain , Carbazoles , Cyclic AMP-Dependent Protein Kinases , Excitatory Postsynaptic Potentials , Colforsin , N-Methylaspartate , Patch-Clamp Techniques , Pyrroles , Receptors, N-Methyl-D-Aspartate , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL